
About the solution set of the null controllability

problem for the chain of integrators system

Choque Rivero A.E. ∗

Introduction

In this work we describe the solution set of
the null controllability (SNC) problem for the
chain of integrators system (0.1). We reduce
the controllability problem to a Hausdorff mo-
ment problem (HMP) which is treated with
help of the V.P. Potapov’s Fundamental Ma-
trix Inequality (FMI) method. An example of
continuous, explicit solution of the SNC prob-
lem is given.

Notations. We use lRn, lC to denote the sets of
n–dimensional Euclidean space (lR is the set of
real numbers) and complex numbers, respec-

tively. We will use Cf
L to denote the set of all

functions f : 0 ≤ f(τ) ≤ L, τ ∈ [a, b]. The
symbol M[a, b] stands for the set of all non-
negative measures on [a, b]. z̄ and w∗ denote
the complex conjugate of the number z and
function w, respectively.

Statement of the problem. We consider
the following controllable system,

ẋ = Ax + bu, x(0) = x0, |u| ≤ 1 (0.1)

where

A =









0 0 · · · 0

1 0
. . . 0

...
. . .

. . .
...

0 · · · 1 0









, b =








1
0
...
0








.

(0.2)
Here x ∈ lRn, obviously A is a n × n matrix.
It is required to describe the set of all controls

∗Universidad Autónoma del Carmen,

Calle 56 No.4, Col. Aviación, C.P. 24180,

Cd.del Carmen,Campeche,México,
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u such that |u(t)| ≤ 1, t ∈ [0, θ], for some θ:
x(θ) = 0.
The case θ → min which represents the time
optimal control, was considered in [1].

Now we write some notions about moment
problems which are crucial for the present
work:
L Markov moment problem in finite in-
terval [a,b]
Let be given a sequence of real numbers
{cj}

k
j=0. Find the set of functions f : f ∈ Cf

L

such that the relation

cj =

b∫

a

τ jf(τ)dτ, j ∈ {0, · · · , k}. (0.3)

holds. We use Cf
L({cj}

k
j=0) to denote the set of

solutions of (0.3). Remark Cf
L({cj}

k
j=0) ⊆ Cf

L.

The finite Hausdorff moment problem.
The classical power moment problem for an
interval [a, b] is stated as follows: Let be given
a finite sequence of real numbers {sj}

k
j=0, such

that

sj =

b∫

a

τ jσ(dτ), j ∈ {0, · · · , k}. (0.4)

It is required to find the set of mea-
sures σ : σ ∈ M[a, b] such that (0.4)
holds. We use M([a, b], {sj}

k
j=0) to denote

the set of solutions of (0.4). Remark that
M([a, b], {sj}

k
j=0) ⊆ M[a, b].

Relation between the L–Markov power
moment and the finite Hausdorff mo-
ment problem
The treatment of the L–Markov moment prob-
lem is usually connected to the problem of

1
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finding a holomorphic function, z ∈ lC \ [a, b]

c(z) =

b∫

a

f(τ)

τ − z
dτ, f ∈ Cf

L. (0.5)

In terms of the asymptotic expansion

b∫

a

f(τ)

τ − z
dτ = −

1

z

b∫

a

(

1 −
τ

z

)−1

f(τ)dτ

= −
∞∑

j=0

1

zj+1

∫ b

a

τ jf(τ)dτ

= −

∞∑

j=0

cf
j

zj+1
, (0.6)

it is required to find the set of functions f :
f ∈ Cf

L such that cf
j = cj , j ∈ {0, . . . , k}, that

is f ∈ Cf
L({cj}

k
j=0). Here cf

j =
∫ b

a
τ jf(τ)dτ ,

f ∈ Cf
L and cj is number of a given sequence

of numbers {cj}
k
j=0.

In a similar way, a holomorphic function de-
fined in z ∈ lC \ [a, b],

s(z) =

b∫

a

σ(dτ)

τ − z
, (0.7)

called the associated function or Stieltjes
transform of σ (σ ∈ M[a, b]), is usually con-
nected to the problem (0.4). Its asymptotic
expansion

b∫

a

σ(dτ)

τ − z
= −

1

z

b∫

a

(

1 −
τ

z

)−1

σ(dτ)

= −
∞∑

j=0

1

zj+1

∫ b

a

τ jσ(dτ)

= −

∞∑

j=0

sσ
j

zj+1
, (0.8)

reduces the considered moment problem to
the problem of finding a set of σ such that

sσ
j = sj , j ∈ {0, . . . , k}. Here sσ

j =
b∫

a

τ jσ(dτ),

σ ∈ M[a, b]. That is, we find the set of mea-
sures σ ∈ M([a, b], {sj}

k
j=0).

Let us remark that the Stieltjes transform de-
termines the measure σ uniquely.

The relation between the problem (0.5) and
(0.7) is given by the equation, (see [4])

b∫

a

σ(dτ)

z − τ
=

1

z − a
Exp




1

L

b∫

a

f(τ)dτ

z − τ



 .

(0.9)
The asymptotic expansion of the left and right
sides of (0.9) gives

s0

z
+

s1

z2
+

s2

z3
+ · · ·

=
1

z − a
Exp

[
1

L

(c0

z
+

c1

z2
+

c2

z3
+ · · ·

)]

.

(0.10)

The equality (0.10) turns into the follow-
ing explicit relation between cj and sj , j ∈
{0, · · · , k} (see [5]), (here for simplicity, a = 0)

s0 = 1, s1 =
c0

L
, s2 =

c1

L
+

c2
0

2L2
,

s3 =
c2

L
+

c0c1

L2
+

c3
0

6L3
,

sj+1 =
1

(j + 1)!Lj+1

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 −L · · · 0

2c1 c0
. . . 0

...
. . .

. . .
...

jcj−1 (j − 1)cj−2 · · · −jL
(j + 1)cj jcj−1 · · · c0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
cj

L
+

c0cj−1

L2
+ · · · , (j ≥ 0). (0.11)

Using the bijective relation (0.11), the L–
Markov moment problem can be solved in
terms of the [a, b]–Hausdorff moment problem.
We carry out the treatment of the last prob-
lem with help of the Potapov’s FMI approach,
(see [2], [3]). Let be remarked that in [2] and [3]
an explicit solution of the nondegenerate ma-
trix version of the Hausdorff matrix moment
problem was given.

Taking into account the remarkable difference
in the construction of the solution of both
cases, the even number and the odd number
of data, we introduce first the matrices which

2
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appear in the FMI for the even case (scalar
version).

Definition 0.1 Let k = 2n+1. Using the mo-
ments s0, s1, . . . , s2n+1 we construct the fol-
lowing matrices

K̃1 = {sj+k}
n
j,k=0, K̃2 = {sj+k+1}

n
j,k=0

T =









0 0 . . . 0 0

1 0
. . . 0 0

...
. . .

. . .
...

...
0 0 . . . 1 0









︸ ︷︷ ︸

n+1

,

v = column[1, 0, . . . , 0]

u = column[−s0,−s1, . . . ,−sn],

RT (z) = (I − zT )−1.

K1 = −aK̃1 + K̃2, K2 = bK̃1 − K̃2,

u1 = u − aTu, u2 = −u + bTu.

Further, we introduce two auxiliary holomor-
phic functions

s̃1(z) = (z − a)s(z),

s̃2(z) = (b − z)s(z), z ∈ lC \ [a, b].

(0.12)

Where s(z) is the Stieltjes transform of σ :
σ ∈ M[a, b].

In a similar way we introduce the matrices for
the Potapov’s FMI odd case.

Definition 0.2 Let k = 2n. Let T1 = T , T is
defined in definition (0.1). Using the moments
s0, s1, . . . , s2n we construct the following ma-
trices

K1 = {sj+k}
n
j,k=0,

v1 = column[1, 0, . . . , 0],

u1 = column[0,−s0, . . . ,−sn−1],

RT1
(z) = (I − zT1)

−1,

K̃1 = {sj+k+1}
n−1
j,k=0,

K̃2 = {sj+k}
n−1
j,k=0

K̃3 = {sj+k+2}
n−1
j,k=0,

K2 = (a + b)K̃1 − abK̃2 − K̃3,

T2 =








0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0








︸ ︷︷ ︸

n

,

v2 = column[1, 0, . . . , 0],

RT2
(z) = (I − zT2)

−1,

ũ1 = column[−s0,−s1, . . . ,−sn−1],

ũ2 = column[0,−s0, . . . ,−sn−2]

ũ3 = [−s1,−s2, . . . ,−sn],

u2 = (a + b)ũ1 − abũ2 − ũ3.

Here u1, v1 ∈ lRn+1, u2, v2 ∈ lRn. I represents
the identity matrix of respective dimension.
Further, we introduce two auxiliary holomor-
phic functions

s̃1(z) = s(z),

s̃2(z) = (b − z)(z − a)s(z) − s0z,

z ∈ lC \ [a, b]. (0.13)

Where s(z) is the Stieltjes transform of a non-
negative σ on [a, b].

We define the system of Potapov’s FMI for the
even and odd cases [2],[3].

Definition 0.3 Let (sj)
k
j=0 be a sequence of

real numbers. The function s is called a solu-
tion of the associated system of V.P. Potapov’s
fundamental matrix inequality, if s satisfies
the following properties:

(i) s is holomorphic in lC \ [a, b].

(ii) For r ∈ {1, 2} the inequality

[
Kr RTr

(z) [ vr s̃r(z) − ur ]
∗ {s̃r(z) − s̃∗r(z)}/{z − z̄}

]

≥ 0

(0.14)
holds.

Where Kr, Tr, ur, sr(z) and vr are defined as
in (0.12) and (0.13). ∗ means the complex con-
jugate of RTr

(z) [ vs̃r(z) − ur ].

In definition 0.3 the auxiliary functions s̃r(z),
r ∈ {1, 2} and Tk correspond to the even and

3
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odd cases of definition 0.1 and 0.2. Remark
that for k = 2n + 1 the matrix T1 = T2 = T
and v1 = v2 = v.

It turns out that the treatment of the matrix
moment problem is equivalent to finding all
solutions of corresponding fundamental ma-
trix inequalities system of Potapov type (see
[2],[3]):

Theorem 0.1 The function s(z) is a Stielt-
jes transform of σ : σ ∈ M([a, b], {sj}

k
j=0) iff

s(z) is a solution of the system of Potapov’s
Fundamental Matrix Inequalities (0.14).

This theorem takes place for both the even
and the odd case of data. In this way the
problem of finding the Stieltjes transform
of σ is reduced to the problem of find-
ing holomorphic functions s(z) (see defini-
tion 0.3) such the inequality (0.14) holds. Let
R([a, b], (sj)

k
j=0) the set of Stieltjes transforms

of M([a, b], {sj}
k
j=0).

Now we show that the SNC problem can
be formulated in terms of a classical [0, θ]–
Hausdorff moment problem.

1 From the SNC problem

to the classical Hausdorff

moment problem.

The solution of the system (0.1) can be written
in the following form:

x(θ) = eAθ



x0 +

θ∫

0

e−Aτ bu(τ)dτ



 . (1.1)

From the complete controllability of (0.1)
there exists θ such that x(θ) = 0.
Taking into account the relation

e−Aτ b =









1
−τ
...

(−1)n−1

(n−1)! τn−1









, (1.2)

the equality (1.1) can be written in the form

−xj
0 = (−1)j−1

(j−1)!

θ∫

0

τ j−1u(τ)dτ, j ∈ {1, . . . , n}.

We write the last relation in an equivalent
form

(−1)j(j − 1)!xj
0 = 2

θ∫

0

τ j−1 (u(τ) + 1)

2
dτ

−

θ∫

0

τ j−1dτ,

θj + (−1)jj!xj
0

2j
=

θ∫

0

τ j−1f(τ)dτ,

j ∈ {1, . . . , n}. (1.3)

Thus, the SNC problem is reduced to the prob-
lem of finding the minimal θ and a function
0 ≤ f(τ) ≤ 1, τ ∈ [0, θ] for which the relation
(1.3) takes place.

Denote through cj−1(θ, x0), j ∈ {1, . . . , n}
the left hand side of (1.3). Using the relation
(0.11) for L = 1, a = 0, b = θ, we obtain the
data moments of the classical [0, θ]–Hausdorff
moment problem, which we symbolize through
sj(θ, x0), j ∈ {0, . . . , n}.

From the relation (0.11) we obtain the follow-
ing

Proposition 1.1 (See [5], pag. 324) The L–
Markov moment problem with cj−1(θ, x0), j ∈
{1, . . . , n} entries is solvable iff the [0, θ]–
Hausdorff moment problem with entries
sj(θ, x0), j ∈ {0, . . . , n} is solvable.

In the next section we are going to show that
the SNC problem is reduced to the problem of
finding a solution of the Potapov’s FMI (0.14).

2 Solution of the SNC

problem.

Using the sequence {sj(θ, x0)}
n
j=0, we con-

struct Hankel matrices K1, K2 for the even as
well as the odd number of data, and vectors

4

ISBN: 970-32-2137-8

      CONGRESO ANUAL DE LA AMCA 2004

130



ur, vr, r = {1, 2} as described in definition 0.1
and 0.2.
We assume that K1 and K2 are positive defi-
nite, i.e. det Kr 6= 0, r = {1, 2}. Observe that
the case det K1 = 0 and/or det K2 = 0 cor-
responds to the time optimal control for the
system (0.1).

Following the Potapov schema, we introduce a
polynomial 2×2 matrix function (see [2], [3]),
the so called resolvent matrix of the HMP. In
the even case we define,

U11(z) := 1 − zu∗
2 RT∗(z)K−1

2 v,

U12(z) := u∗
1 RT∗(z)K−1

1 u1,

U21(z) := −(θ − z)zv∗RT∗(z)K−1
2 v,

U22(z) := 1 + zv∗RT∗(z)K−1
1 u1.

In odd case we define

U11(z) := 1 − zu∗
1 RT∗

1
(z)K−1

1 v1,

U12(z) := M − zu∗
1 RT∗

1
(z)K−1

1 v1M

+zu∗
1 RT∗

1
(z)K−1

1 u1,

U21(z) := −zv∗
1 RT∗

1
(z)K−1

1 v1,

U22(z) := 1 − zv∗
1 RT∗

1
(z)K−1

1 v1M

+zv∗
1 RT∗

1
(z)K−1

1 u1.

Where M = (1 + θ[u∗
1K

−1
1 v1 −

u2K
−1
2 v2])(θv

∗
1K−1

1 v1)
−1.

We introduce two classes of functions which
are set of parameters of solutions of the HMP.

Definition 2.1 Let R[a, b] denote the class of
all functions w : lC \ [a, b] → lC such that: w is
holomorphic in lC\[a, b], Im w(z) ≥ 0, w(x) ≥
0 if x ∈ (−∞, 0) and w(x) ≤ 0 if x ∈ (θ,∞).

Definition 2.2 Let S[a, b] denote the class of
all functions w : lC \ [a, b] → lC such that: w is
holomorphic in lC\[a, b], Im w(z) ≥ 0, w(x) ≥
0 if x ∈ (−∞, 0) ∪ (θ,∞).

The next two theorems are concerned with the
integral representation of matrix functions be-
longing to R[a, b] and S[a, b].

Theorem 2.1 The following statement holds:

w ∈ R[a, b] iff w(z) =
b∫

a

(x−z)−1σ(dx), where

σ is a nonnegative measure on [a, b].

Theorem 2.2 The following statement holds:

w ∈ S[a, b] iff w(z) = (b− z)
b∫

a

(x− z)−1σ(dx),

where σ is a nonnegative measure on [a, b].

The proofs of these theorems are available in
[4].
The next theorem describes the set of solu-
tions of the HMP (see [2],[3],[4]):

Theorem 2.3 The fractional linear transfor-
mation

s :=
U11 + w U12

U21 + w U22
(2.1)

yields a bijection between:
a) (In the even case), the parameter w ∈
R[a, b] ∪ ∞ and the Stieltjes transform s ∈
R([a, b], (sj)

2n+1
j=0 ).

b)(In the odd case), the parameter w ∈
S[a, b] ∪ ∞ and the Stieltjes transform s ∈
R([a, b], (sj)

2n
j=0).

The theorem 2.3 says that for a given parame-
ter w (one can use the integral representation)
we obtain the Stieltjes transform s of σ. To cal-
culate σ (that is f , consequently the control
u) from s, we use the Stieltjes–Perron inverse
formula (we assume σ(0) = 0, t ∈ (0, θ]):

σ(t) = lim
ε+0

1

π

∫ t

0

Im s(x + iε)dx. (2.2)

Taking into account the relation (0.9) and
(2.2) we obtain f(t), t ∈ [0, θ] from the re-
lation :

f(t) = − lim
ε→+0

arg ((t + iε)s(t + iε)) (2.3)

Consequently, the set of controls
U = {u : u(t) = 2f(t) − 1, t ∈ [0, θ]} is
the solution of the SNC problem.
Example. Consider the system ẋ1 =
u, ẋ2 = x1, |u| ≤ 1, with initial position
x0

1 = 0, x0
2 = 1. For θ = 3 the matrices

K1 and K2 are positive definite. In this
case the solution of the equivalent Haus-
dorff moment problem is given by (2.1),
where U11 = 1 − 12

13z, U12 = 23
15 − 4

5z,
U21 = 1

13z(−31 + 12z), U22 = 1 − 41
15z − 4

5z2.

5
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We set w = (θ − z)
∫ θ

0
(t − z)−1dt, the cor-

respondent measure σ(t) = t. The control
u(t) = 2f(t) − 1 where,

f(t) =

{
1
π
(h(t) − 1+(−1)k

2 π), tk≤t<tk+1,
k=0,..,3,

1
π
(h(t) − π), t4 ≤ t ≤ 3.

h(t) = arctan 38025π
g(t) , g(t) = 194435 +

3t(2704(−7 + 3t) + 75π2(−3 + t)(−31 +
12t)(−13 + 12t)) + 15

4 lg
∣
∣ t−3

t

∣
∣ (−26(−3 +

2t)(65 + 144(−3 + t)t) + 15(−3 +
t)t(−31 + 12t)(−13 + 12t) lg

∣
∣ t−3

t

∣
∣).

t0 = 0, t1 = 0.0197331, t2 = 1.11521806, t3 =
2.526024, t4 = 2.9091237. We obtain the
following graphs.
Graph of the control:

0.5 1 1.5 2 2.5 3

-0.75

-0.5

-0.25

0.25

0.5

0.75

u

t

Graph of the positional trajectory beginning
at x0 = (0, 1)T . The vertical axis corresponds
to the behavior of x2(t), the horizontal to
x1(t).

-0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

Conclusion. The SNC problem was first re-
duced to a Markov moment problem. Due to
the relation (0.9), the last problem was re-
duced to Hausdorff moment problem on [0, θ].
By virtue of theorem 0.1 the problem of find-
ing the Stieltjes transform of solution (a mea-
sure σ) of the Hausdorff moment problem was
“translated” to the problem of finding a solu-
tion (a holomorphic in lC\[a, b] function) of the
FMI (0.14). In the nondegenerate case (K1,
K2 are positive definite), using the Stieltjes–

Perron inverse formula, the solution of the
SNC problem is given. It means, we have given
(using a parameter) the solution set of the
null controllability problem for the chain of
integrators system except for the case det K1

and/or det K2 (denegerate case), which corre-
sponds to the time optimal control (see[1]).
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Basel/Switzerland, ISSN 0378620X, sub-
mitted.

[4] Krein M.G., Nudelman A.A.:
The Markov moment problem and ex-
tremal problems. Ideas and problems of
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